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The discrete form of Parseva’s theorem is

N-1 1 N-1
Ihil* = < D [Hal” (12.1.10)
k=0 n=0

Therearea so discrete ana ogsto the convol ution and correl ationtheorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computationisinvolved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W = e2m/N (12.2.1)

Then (12.1.7) can be written as

N—
H, = Wnkhy, (12.2.2)
k=0

=

In other words, the vector of h;’sis multiplied by a matrix whose (n, k)th element
isthe constant W to the power n x k. The matrix multiplication produces a vector
result whose components are the H,,’s. Thismatrix multiplication evidently requires
N? complex multiplications, plus a smaller number of operations to generate the
required powers of 1. So, the discrete Fourier transform appears to be an O(N?)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log, N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log, N and N? isimmense.
With N = 106, for example, it isthe difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on amicrosecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from thework
of JW. Cooley and JW. Tukey. Retrospectively, we now know (see[1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of length V/2. One of the two is formed from the
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12.2 Fast Fourier Transform (FFT) 505

even-numbered points of the original N, the other from the odd-numbered points.
The proof is simply this:

2
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F. = e27T’L]k/ij
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Inthelast line, W is the same complex constant as in (12.2.1), F}¢ denotes the kth
component of the Fourier transform of length N/2 formed from the even components
of theoriginal f;’s, while F? isthe corresponding transform of length V/2 formed
from the odd components. Notice also that & in thelast line of (12.2.3) varies from
0 to N, not just to N/2. Nevertheless, the transforms F¢ and F? are periodicin k&
with length N/2. So each is repeated through two cycles to obtain F.

The wonderful thing about the Daniel son-Lanczos Lemma isthat it can be used
recursively. Having reduced the problem of computing F}, to that of computing
F¢ and F?, we can do the same reduction of £} to the problem of computing
the transform of its N/4 even-numbered input data and N/4 odd-numbered data
In other words, we can define 7 and F£° to be the discrete Fourier transforms
of the points which are respectively even-even and even-odd on the successive
subdivisions of the data

Although there are ways of treating other cases, by far the easiest case is the
one in which the original N is an integer power of 2. In fact, we categorically
recommend that you only use FFTswith N apower of two. If thelength of your data
set isnot a power of two, pad it with zeros up to the next power of two. (Wewill give
more sophisticated suggestions in subsequent sections below.) With this restriction
on N, it is evident that we can continue applying the Danielson-Lanczos Lemma
until we have subdivided the data all the way down to transforms of length 1. What
isthe Fourier transform of length one? It isjust the identity operation that copiesits
oneinput number intoitsoneoutput slot! In other words, for every pattern of log, N
e'sand o's, thereis aone-point transform that isjust one of the input numbers f,,

eroeeoeanoee — fn for somen (1224)

(Of course thisone-point transform actually does not depend on k, sinceitis periodic
in k& with period 1.)

The next trick is to figure out which value of n corresponds to which pattern of
e'sand o'sin equation (12.2.4). The answer is. Reverse the pattern of e’'sand o’s,
thenlet e = 0 and o = 1, and you will have, in binary the value of n. Do you see
why it works? It is because the successive subdivisionsof the datainto even and odd
aretests of successive low-order (least significant) bitsof n. Thisideaof bit reversal
can be exploited in a very clever way which, adong with the Danielson-Lanczos
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506 Chapter 12.  Fast Fourier Transform

000 > 000 000
001 001 001
011 011 011
100 100 100
101 > 101 101
110 / \ 110 110
111 > 111 111
@ (b)

Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

Lemma, makes FFTs practical: Suppose we take the origina vector of data f;
and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not of j, but of the number obtained by bit-reversing j.
Then the bookkeeping on the recursive application of the Daniel son-Lanczos Lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairsto get two-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order N operations, and there are evidently log, N combinations, so the whole
algorithmisof order N log, N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order than N log, N).

This, then, isthe structure of an FFT algorithm: It has two sections. The first
section sortsthe datainto bit-reversed order. Luckily thistakes no additional storage,
sinceit involvesonly swapping pairs of elements. (If £, isthebit reverse of k2, then
ko isthe bit reverse of k;.) The second section has an outer loop that is executed
log, N times and calculates, in turn, transforms of length 2,4,8,..., N. For each
stage of this process, two nested inner loops range over the subtransforms already
computed and the elements of each transform, implementing the Daniel son-Lanczos
Lemma. The operation is made more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop, where they are made only log, N
times. Computation of the sines and cosines of multiple angles is through simple
recurrence relations in the inner loops (cf. 5.5.6).

The FFT routine given below is based on one originally written by N. M.
Brenner. The input quantities are the number of complex data points (nn), the data
array (datal1..2*nn]), and isign, which should be set to either £1 and isthesign
of 4 in the exponential of equation (12.1.7). When isign isset to —1, the routine
thus calculates the inverse transform (12.1.9) — except that it does not multiply by
the normalizing factor 1/N that appears in that equation. You can do that yourself.

Notice that the argument nn is the number of complex data points. The actual
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12.2 Fast Fourier Transform (FFT) 507

length of the real array (datal1..2*nn]) is 2 times nn, with each complex vaue
occupying two consecutive locations. In other words, data[1] is the red part of
fo, data[2] isthe imaginary part of f,, and so on up to data[2*nn-1], which
is therea part of fiy_1, and data[2#nn], which is the imaginary part of fn_1.
The FFT routine gives back the F),’s packed in exactly the same fashion, as nn
complex numbers.

Thereal and imaginary partsof the zero frequency component Fy areindata[1]
and data[2]; thesmallest nonzero positivefrequency hasreal and imaginary partsin
data[3] and data[4]; the smallest (in magnitude) nonzero negative frequency has
real and imaginary partsin data[2+nn-1] and data[2*nn]. Positive frequencies
increasing in magnitude are stored in the real-imaginary pairsdata[5], datal[6]
up todatal[nn-1], data[nn]. Negative frequencies of increasing magnitude are
stored in data[2*nn-3], data[2*nn-2] down to data[nn+3], datal[nn+4].
Finaly, thepair data[nn+1], data[nn+2] containtherea and imaginary parts of
the onealiased point that contains the most positiveand the most negative frequency.
You should try to develop a familiarity with this storage arrangement of complex
spectra, also shown in Figure 12.2.2, since it is the practical standard.

Thisis a good place to remind you that you can also use aroutine like four1
without modification even if your input data array is zero-offset, that is has the range
datal[0..2*nn-1]. Inthiscase, simply decrement the pointer to data by onewhen
fourl isinvoked, e.q., fouri(data-1,1024,1) ;. Thered part of f, will now be
returned in data[0], the imaginary part indata[1], and so on. See §1.2.

#include <math.h>
#define SWAP(a,b) tempr=(a); (a)=(b); (b)=tempr

void fourl(float data[], unsigned long nn, int isign)
Replaces data[1. .2*nn] by its discrete Fourier transform, if isign is input as 1; or replaces
datal1..2*nn] by nn times its inverse discrete Fourier transform, if isign is input as —1.
data is a complex array of length nn or, equivalently, a real array of length 2*nn. nn MUST
be an integer power of 2 (this is not checked for!).
{

unsigned long n,mmax,m,j,istep,i;

double wtemp,wr,wpr,wpi,wi,theta; Double precision for the trigonomet-

float tempr,tempi; ric recurrences.

n=nn << 1;

j=1;

for (i=1;i<n;i+=2) { This is the bit-reversal section of the

if (3 > 1) { routine.
SWAP (datal[j],datalil); Exchange the two complex numbers.
SWAP(data[j+1],datal[i+1]);
}
m=n >> 1;
while (m >= 2 && j > m) {
=
m >>= 1;
}
= m
}
Here begins the Danielson-Lanczos section of the routine.
mmax=2;
while (n > mmax) {
istep=mmax << 1;
theta=isign*(6.28318530717959/mmax) ; Initialize the trigonometric recurrence.
wtemp=sin(0.5*theta) ;
wpr = -2.0*wtemp*wtemp;

Outer loop executed log, nn times.
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508 Chapter 12.  Fast Fourier Transform
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Figure 12.2.2. Input and output arrays for FFT. (a) The input array contains N (a power of 2)
complex time samples in areal array of length 2V, with real and imaginary parts alternating. (b) The
output array contains the complex Fourier spectrum at N values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
is ambiguous with the most negative frequency). Negative frequencies follow, from the second-most
negative up to the frequency just below zero.

wpi=sin(theta);
wr=1.0;
wi=0.0;
for (m=1;m<mmax;m+=2) {
for (i=m;i<=n;i+=istep) {
j=i+mmax; This is the Danielson-Lanczos for-
tempr=wr*datal[j]-wixdata[j+1]; mula:
tempi=wr*data[j+1]+wixdatal[j];
datal[jl=datal[i]-tempr;
data[j+1]=data[i+1]-tempi;
datal[i] += tempr;
datal[i+1] += tempi;

Here are the two nested inner loops.

wr=(wtemp=wr) *wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

Trigonometric recurrence.

}

mmax=istep;
}

(A double precision version of four1, named dfourl, isused by the routine mpmul
in §20.6. You can easily make the conversion, or else get the converted routine
from the Numerical Recipes diskette.)
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12.2 Fast Fourier Transform (FFT) 509

Other FFT Algorithms

We should mention that thereareanumber of variantson thebasic FFT algorithm
given above. As we have seen, that algorithm first rearranges the input elements
into bit-reverse order, then builds up the output transform in log, IV iterations. In
the literature, this sequence is called a decimation-in-time or Cooley-Tukey FFT
algorithm. It is also possibleto derive FFT algorithmsthat first go through a set of
log, N iterations on the input data, and rearrange the output values into bit-reverse
order. Theseare called decimation-in-frequency or Sande-Tukey FFT agorithms. For
some applications, such as convolution (§13.1), one takes a data set into the Fourier
domain and then, after some manipulation, back out again. Inthesecasesitispossible
to avoid al bit reversing. You use a decimation-in-frequency agorithm (without its
bit reversing) to get into the “scrambled” Fourier domain, do your operations there,
and then use an inverse algorithm (without its bit reversing) to get back to the time
domain. While elegant in principle, this procedure does not in practice save much
computation time, since the bit reversals represent only asmall fraction of an FFT's
operations count, and since most useful operationsin the frequency domain require
a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initia data set of length N not al the
way down to the trivial transform of length 1, but rather only down to some other
small power of 2, for example N = 4, base-4 FFTs, or N = 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding which
take advantage of specia symmetries of that particular small N. For example, for
N = 4, the trigonometric sines and cosines that enter are al +1 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These
can be faster than simpler FFTs by some significant, but not overwhelming, factor,
eg., 20 or 30 percent.

There are also FFT agorithms for data sets of length NV not a power of
two. They work by using relations analogous to the Danielson-Lanczos Lemma to
subdivide the initial problem into successively smaller problems, not by factors of
2, but by whatever small prime factors happen to divide N. The larger that the
largest prime factor of NV is, the worse this method works. If IV is prime, then no
subdivision is possible, and the user (whether he knows it or not) is taking a slow
Fourier transform, of order N2 instead of order N log, N. Our adviceisto stay clear
of such FFT implementations, with perhaps one class of exceptions, the Winograd
Fourier transformalgorithms. Winograd algorithms are in some ways ana ogous to
the base-4 and base-8 FFTs. Winograd has derived highly optimized codings for
taking small- NV discrete Fourier transforms, e.g., for N = 2,3,4,5,7,8,11,13, 16.
The agorithms also use a new and clever way of combining the subfactors. The
method involvesa reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplicationsin the
algorithm. For some especidly favorable values of NV, the Winograd algorithms can
be significantly (e.g., up to a factor of 2) faster than the simpler FFT agorithms
of the nearest integer power of 2. This advantage in speed, however, must be
weighed against the considerably more complicated data indexing involved in these
transforms, and the fact that the Winograd transform cannot be done “in place.”

Finaly, an interesting class of transforms for doing convolutions quickly are
number theoretic transforms. These schemes replace floating-point arithmetic with
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510 Chapter 12.  Fast Fourier Transform

integer arithmetic modulo some large prime N+1, and the Nth root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
a al, but the properties are quite similar and computational speed can be far
superior.  On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itsalf is not easily interpretable
as a “frequency” spectrum.
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12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples f;, j = 0...N — 1. To use fourl, we put these into a complex array
with all imaginary parts set to zero. The resulting transform F,,, n =0... N — 1
satisfies Fiyv_,* = F,. Since this complex-vaued array has real values for Fj
and Fi /2, and (IN/2) — 1 other independent values I} . .. Fiy/o_1, it has the same
2(N/2 —1) 4 2 = N “degrees of freedom” asthe original, real data set. However,
theuse of thefull complex FFT algorithmfor real dataisinefficient, bothin execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
rea functionsinto the input array in such away that their individua transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of haf itslength. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. Thisis donein the program realft below.
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